

Ultra Low Power
Microcontroller Module
Opens New Doors for
Engineers—Part 2:
Configuring Eclipse
Simon Bramble�, Staff Engineer

Abstract
This article continues the introduction of an ultra low power, feature rich microcontroller module and
explains how to program and debug it using popular, free of charge tools. Unlike many other high end
microcontroller modules, this one is available in a DIP footprint, allowing easy prototyping for professional
engineers and hobbyists alike. While Part 1 describes how to create a project in Eclipse, Part 2 describes how
to configure Eclipse to work with the PICO.

Reconfiguring Eclipse to Work with the
PICO Hardware
The project created in Part 1 was designed around the
MAX32625EVKIT hardware, which is different from the PICO hard-
ware, so the file describing the hardware on the EV kit needs to be
changed to reflect the hardware on the PICO. The original boards.c
file is stored in:

C:\Maxim\Firmware\MAX32625\Libraries\Boards\EvKit_V1\
Source

and the new boards.c file for the PICO is stored in the zip file, which
can be downloaded using the link at the end of this article. Copy the
whole Boards directory from the zip file into the directory where
the main program is saved as shown in Figure 1. This directory
describes the components included in the PICO PCB.

Figure 1. Locating the Boards directory.

The PICO contains a bootloader to enable the program to be run.
The bootloader also allows the binary file to be loaded using drag
and drop. Eclipse will overwrite this bootloader if the program is
loaded into the MAX32625 with the default settings. The linker

TECHNICAL ARTICLE

https://www.analog.com/en/index.html
https://www.analog.com/en/resources/technical-articles/ultra-low-power-microcontroller-module-part1.html
https://www.analog.com/en/resources/technical-articles/ultra-low-power-microcontroller-module-part1.html
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/max32625-evkit.html
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/max32625pico.html#eb-overview
https://www.analog.com/en/resources/evaluation-hardware-and-software/embedded-development-software/software-download.html?swpart=SFW0001500A
https://www.analog.com/en/products/max32625.html

2

file, called max32625.ld, brings all the programs together into
a binary file to be loaded into the host microcontroller. It also
determines which part of memory the program is loaded into and
this needs to be modified so as not to overwrite the bootloader.
The modified linker file is contained in the downloaded zip file.

Copy the linker file to the project directory as shown in Figure 1.

The Makefile, stored in the project directory, tells the compiler
where to find the linker file and Boards directory, so it needs
to be edited to point to the new location of the modified linker
file and Boards directory. Copy the new Makefile from the zip
file into the project directory as shown in Figure 1, overwriting
the original.

Inside the new Boards directory, a modified board.c file
(in the EvKit_V1\Source directory) can be found, which describes
the connections to the LEDs and pushbuttons on the PICO. It is
easy to see how this is constructed by comparing the code in
Figure 2 with the PICO schematic in Figure 3.

Figure 2. LED and pushbutton configuration.

Figure 3. LED and pushbutton schematic.

The boards.c file has also been extensively modified to allow the
PICO to print data to a terminal program, like Tera Term, which
can prove invaluable in the debug process. If the print function is
used, configure the terminal program to communicate at a baud
rate of 115200 as shown in Figure 4.

Figure 4. Tera Term settings.

The bootloader can leave some peripherals in a partially con-
figured state and there is more code in board.c to reset them
during initialization as shown in Figure 5.

Figure 5. Bootloader initialization.

Finally, the PICO uses a different power management IC from
the EV kit. However, the PICO’s power management IC does not
need programming as it runs with its default settings, so the
lines of code that configure it have been deleted from the new
board.c file.

Building the Final Project
The zip file contains a sample program, main.c in the Template
folder, that detects when the PICO’s pushbutton has been

3

depressed, then flashes the RGB LED on and off, sends out
2 bytes of data via the SPI port, then sends out one byte of data
via the UART, then prints Hello from the PICO on a terminal pro-
gram. Copy this program into the project directory, overwriting
the original. The main.c code has been copied from the many
sample programs in the MAX32625 project directories as seen
in the code’s comments. This should give the user a head start in
creating the final application code.

Build the project by clicking on the Hammer symbol as shown in
Figure 6. If more than one project is open in Eclipse, hovering
over the Hammer symbol tells the user which project is about to
be built.

Figure 6. Building the project.

The binary file should now be in the build directory of the proj-
ect’s directory as shown in Figure 7.

Figure 7. Location of the binary file.

At this point, it is wise to add the build directory to the Windows
Explorer Quick Access menu. This will prove useful when pro-
gramming the PICO. Right click over the build directory and
select Pin to Quick access and the directory will appear on the
left side of the Windows Explorer menu, under Quick access.

Loading a Binary File
It is important to note that the programming cable is only used
to debug the target PICO and to reprogram the part if the boot-
loader has been overwritten. Loading the binary file does not
require the use of the programming cable and is a simple drag
and drop process.

While holding down the button on the PICO, plug it into the
USB port. The PICO should appear as a new drive, labeled
MAINTENANCE as shown in Figure 8.

Figure 8. The MAINTENANCE drive.

Drag the binary file to the MAINTENANCE drive. Once the file has
loaded onto the PICO, the MAINTENANCE drive should disap-
pear, the PICO will reboot, and the program will start to run on
the PICO.

In the early stages of code development, it is unlikely that
the code will run as predicted, if at all. If the software on the tar-
get PICO needs to be debugged (including stepping through the
code or halting at breakpoints), the second programmer PICO
needs to be programmed with the interface software to enable
it to be connected between the PC and the target PICO. This
programmer PICO issues instructions to the target PICO to start
and stop the target’s execution, enabling Eclipse to examine
the registers.

To configure the second programmer PICO, navigate to the
binary file in the DAPLink Interface Binary directory in the zip
file. Disconnect the second programmer PICO from the USB
port then hold down the button on the programmer PICO while
plugging it back into the USB port. As previously discussed,
a drive called MAINTENANCE should appear. Drag the binary
file (max32625_max32625pico_if_crc.bin) from the DAPLink
Interface Binary directory to the MAINTENANCE drive. This
will configure the programmer PICO with the interface software
and allow single stepping of the target code using Eclipse. The
MAINTENANCE drive should disappear, the programmer PICO
will reboot, and a drive called DAPLINK will appear. At this stage,
it is worth connecting the programming cable to the program-
mer PICO to distinguish it from the target PICO.

4

How to Debug the Target Code
With the programming cable connected to the 10-way plug on
the programmer PICO, press the pogo connector on the other
end to the pads on the rear of the PICO, ensuring the alignment
pins slot into the holes on the PICO as shown in Figure 9.

Figure 9. Connecting the programmer to the target.

Hover the mouse over the debug icon in Eclipse as shown in
Figure 10 to ensure the correct project is to be debugged. The
name of the current project should appear.

Figure 10. Building the project.

Click the debug icon, while keeping the pogo connector attached
to the PICO. The program will compile, then pause at the start of
the code. Hitting F8 on the keyboard will start the debug process.

Double clicking over the code’s line numbers inside Eclipse
allows the user to insert breakpoints.

The user can now debug the code. Registers can be examined
by selecting:

Window > Show View > Other…

from the Eclipse menu, then selecting the desired views by
expanding the Debug folder.

Once it has been established that the code works, this project
can be saved to act as a template for future projects.

How to Recover a Broken PICO
The PICO comes with a preinstalled bootloader that enables drag
and drop programming. When the PICO is plugged in, if neither
the MAINTENANCE nor DAPLINK drives appear, then it is likely
that the bootloader has been overwritten. The bootloader can be
recovered using the following steps.

	• Plug in the programmer PICO and see that a DAPLINK drive
is created.

	• Plug in the broken PICO.
	• Hold the sprung connectors of the programming cable against

the pads on the rear of the broken PICO, ensuring the align-
ment pins slot into the holes on the PICO.

	• Navigate to the Bootloader Binary directory and drag
the bootloader file (max32625pico_bl.bin) to the DAPLINK
drive. It is important to note that the binary is copied to
the drive created by the programmer PICO and not the
target PICO. The programmer PICO is being used as a
conduit to route the binary file to the target PICO via the pro-
gramming cable.

	• The user should now be able to see the MAINTENANCE drive
when the repaired PICO is plugged in while holding down the
button on the PICO.

	• Unplug the programmer PICO.

How to Erase Files in the PICO
Should it be necessary to completely erase the contents of the
PICO, follow the steps:

	• Plug the programmer PICO into a USB port. It will create a
drive called DAPLINK.

	• Plug the PICO that needs to be erased into another USB port.
	• Hold the sprung connectors of the programming cable against

the pads on the rear of the PICO to be erased.
	• Navigate to the erase.act file in the Erase File directory in the

zip file.
	• Drag this file to the DAPLINK drive. The programmer PICO is

being used as a conduit to route the erase file to the target
PICO via the programming cable.

	• This will erase the target PICO.

Conclusion
This could be the start of a good friendship with the PICO. It pro-
vides a great, low cost platform to enable the user to develop
with an extremely powerful yet ultra low power Arm® microcon-
troller. This article gives a complete guide on how to use free
of charge development tools to program and debug the PICO.
Once users have been successful with one project, this project
can be used as a template for future developments with minimal
extra effort. Finally, the 8-bit DIP world can be left behind and
the users can progress into the world of 32-bit microcontrollers
while still being able to prototype with a manageable package.

Download the software files here: https://www.analog.com/
media/en/software/software-configuration/eclipse-configura-
tion.zip

Acknowledgments
I owe a debt of gratitude to ADI’s microcontroller support team
for helping me write this article and for their extensive modifica-
tion of the configuration files.

https://www.analog.com/media/en/software/software-configuration/eclipse-configuration.zip
https://www.analog.com/media/en/software/software-configuration/eclipse-configuration.zip
https://www.analog.com/media/en/software/software-configuration/eclipse-configuration.zip

Engage with the ADI technology experts in our online support community.
Ask your tough design questions, browse FAQs, or join a conversation.

ez.analog.com

analog.com	 TA25776-2/25

For regional headquarters, sales, and distributors or to contact customer service and technical support, visit analog.com/contact.

©2025 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

About the Author
Simon Bramble graduated from Brunel University in London in 1991 with a degree in electrical engineering and electronics, special-
izing in analog electronics and power. He has spent his career in analog electronics and worked at Linear Technology (now part of
Analog Devices).

https://ez.analog.com/
https://www.analog.com/en/index.html
https://www.analog.com/en/index.html
https://www.analog.com/en/contact-us.html
https://ez.analog.com
https://www.analog.com/en/index.html

