Renesas Expands RF Beamforming Portfolio for Satcom Application

Next-Generation Beamformer ICs and Dual-Channel Low Noise Amplifiers Improve Transmit Efficiency and Lower Receive Noise of Phased Array Antennas

0
242

TOKYO, Japan ― Renesas Electronics Corporation today expanded its portfolio of mmWave solutions with the introduction of two new IC families for satellite communications (Satcom), radar, and phased array applications: The F65xx transmit active beamforming ICs and F692x low-noise amplifiers (LNAs). Featuring a combination of low power consumption, high gain, and compact size, the new solutions deliver a performance boost for antennas used in Satcom and radar systems.

The F65xx and F692x devices address the thermal and integration challenges designers face as they transition from bulky mechanically scanned antennas to lower weight and profile active electronically scanned array antennas (AESAs). The two new families support Satcom, radar and point-to-point communications applications in the Ku, Ka, and CDL frequency bands.

“When migrating to AESAs from mechanical antennas, our customers require reliable, compact and cost-effective ICs with exceptionally low power consumption and noise figures that meet their system EIRP and G/T requirements,” said Naveen Yanduru, Vice President of RF Communications, Industrial and Communications Business Division at Renesas. “We are excited about the emerging capabilities that our new IC families will enable, including in-flight live video conferencing, ubiquitous global broadband connectivity and all-weather radar situational awareness for autonomous vehicles and drones.”

About the New RF Solutions

The next generation of 8-channel F6521 (Ku), F6522 (Ka) and F6513 (CDL) Tx active beamforming ICs offers unprecedented performance in a small form factor satisfying the tight integration requirements of planar phased array antennas. They simultaneously satisfy both the effective isotropic radiated power (EIRP) and thermal dissipation requirements of terrestrial Satcom terminals operating on low/medium Earth orbit (LEO) and geosynchronous Earth orbit (GEO) satellite networks in the Ku- and Ka-band spectrum.

Additionally, higher phase and gain resolution are coupled with larger on-chip memory and advanced digital modes to enable precise beam pattern and polarization control, and rapid beam steering. The new ICs share the same physical footprint as the first-generation devices, reducing the required board re-design time when migrating to the second-generation ICs.

Key features of the F65xx ICs include:

  • Compact BGA package with a physical footprint of less than 2.2mm2/ch
  • Single 2.3V supply simplifying power distribution network design
  • Highly efficient operation, consuming <100 mW/ch of power at >10 dBm/ch of RF output
  • Fast beam steering mode with <100 ns beam update times
  • Digital controls compatible with standard 1.8V digital logic
  • Excellent gain/phase orthogonality and low RMS phase and gain errors

The new F6921 (Ku), F6922 (Ka), and F6923 (CDL) dual-channel LNAs offer an exceptional combination of low power consumption, low noise, high gain, and compact size to maximize the antenna array G/T, while minimizing the antenna aperature’s physical size resulting in lower overall power dissipation and system cost. The LNAs feature 19 dB of gain with only 15-20 mW of power consumption and two highly isolated and gain/phase-matched RF channels in a single BGA package with 50 ohm single-ended RF inputs and outputs.

Availability

Evaluation kits and pre-production samples of the F65xx and F692x ICs are available to qualified customers starting in April 2020. More information about the F65xx beamforming ICs and F692x LNAs is available at www.idt.com/satcom.